2/EH-29 (ii) (Syllabus-2015)

2018
(April)

MATHEMATICS

(Elective/Honours)
(Geometry and Vector Calculus)
(GHS-21)

Marks : 75
Time: 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit

Unit-I

1. (a) If by rotation of the rectangular axes the equation $17 x^{2}+18 x y-7 y^{2}=1$ reduces to the form $a x^{2}+b y^{2}=1$, find the angle through which the axes are rotated. Also find the values of a and b.
(b) Prove that the equation

$$
2 x^{2}+x y-6 y^{2}-6 x+23 y-20=0
$$

represents a pair of straight lines. Find the coordinates of their point of intersection.
(c) Reduce the equation

$$
17 x^{2}+12 x y+8 y^{2}-46 x-28 y+17=0
$$

to the standard form.
2. (a) Prove that the equation of the tangent to
the conic

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y=0 \tag{6}
\end{equation*}
$$

at the origin is $g x+f y=0$.
(b) Find the diameter of the conic

$$
15 x^{2}-20 x y+16 y^{2}=1
$$

conjugate to the diameter $y+2 x=0$.
(c) Prove that the two hyperbolas
and

$$
\begin{aligned}
& 4 x^{2}+3 x y+5 x+21=0 \\
& x^{2}-4 x y-3 x+19=0
\end{aligned}
$$

have a common asymptote. Also find the
other asymptotes.

UNIT-II

3. (a) Show that the locus of the point of intersection of any two perpendicular tangents to the parabola $y^{2}=4 a x$ is the directrix.
(b) Find the asymptotes of the hyperbola

$$
x y+a x+b y=0
$$

(c) A tangent to the parabola $y^{2}=8 x$ makes an angle of 45° with the straight line $y=3 x+5$. Find the equation of the tangent and its point of contact.
4. (a) Show that the normal to the rectangular hyperbola $x y=c^{2}$ at the point t meets the curve again at the point t^{\prime} such that $t^{3} t^{\prime}=-1$.
(b) Prove that the straight line $\frac{a x}{3}+\frac{b y}{4}=c$ will be a normal to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

if $5 c=a^{2} e^{2}$.
(c) Prove that two tangents can be drawn
from a given point to an ellipse.
(Turn Over)
UnIT-III
5. (a) Show that the equation of the plane which passes through the point $(2,-3,8)$ and is normal to the line joining the points $(3,4,-1)$ and $(2,-1,5)$ is $x+5 y-6 z+61=0$.
(b) Find the equation to the locus of the point whose distance from the origin is equal to its perpendicular distance from the plane $2 x+3 y-6 z=9$.
(c) Find the shortest distance between the
lines

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}
$$

and $\quad \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
Also show that the lines are coplanar.
6. (a) Prove that the plane

$$
\begin{aligned}
& 2 x-2 y+z+12=0 \\
& \text { touches the sphere } \\
& x^{2}+y^{2}+z^{2}-2 x-4 y+2 z=3
\end{aligned}
$$

(a) Prove that the plane

8D/1713
(b) Find the equation of the right circular cone, whose vertex is $(3,2,1)$, axis is the line

$$
\begin{equation*}
\frac{x-3}{4}=\frac{y-2}{1}=\frac{z-1}{3} \tag{5}
\end{equation*}
$$

and semi-vertical angle is 30°.
(c) Find the equation of the cylinder generated by the lines parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{5}$, the guiding curve being the conic $x=0, y^{2}=8 z$.

Unit-IV

7. (a) If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs and $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$.
(b) Show that the four points $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar if

$$
[\vec{b} \vec{c} \vec{d}]+\left[\begin{array}{lll}
\vec{c} & \vec{a} & \vec{d}]+\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{d}
\end{array}\right]=[\vec{a} \vec{b} \vec{c}] \tag{5}
\end{array}\right]
$$

(c) Show that the volume of the parallelopiped whose edges are represented by $(3 i+2 j-4 k),(3 i+j+3 k)$ and $(i-2 j+k)$ is 49 cubic units.
8. (a) Show that a necessary and sufficient condition for a vector $\vec{u}(t)$ to have a constant direction is $\vec{u} \times \frac{d \vec{u}}{d t}=0$.
(b) Find the unit tangent vector at any point on the curve $x=a \cos t, y=a \sin t$, $z=b t$.

6
(c) If $\vec{r}=3 t \hat{i}+3 t^{2} \hat{j}+2 t^{3} \hat{k}$, then find

$$
\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}
$$

Unit-V

9. (a) Find the directional derivative of

$$
\phi=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}
$$

at the point $P(3,1,2)$ in the direction of the vector $y z \hat{i}+z x \hat{j}+x y \hat{k}$.
(b) Show that
(c) If

$$
\operatorname{grad} e^{\left(x^{2}+y^{2}+z^{2}\right)}=2 e^{r^{2}}
$$

where $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

$$
\vec{A}=(x+y+1) \hat{i}+\hat{j}+(-x-y) \hat{k}
$$

prove that $\vec{A} \cdot(\nabla \times \vec{A})=0$.
10. (a) Prove that

$$
\operatorname{div} \hat{r}=\frac{2}{r}
$$

where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and

$$
\begin{equation*}
r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \tag{5}
\end{equation*}
$$

(b) Find the equations of the tangent plane and normal line to the surface

$$
f=2 x z^{2}-3 x y-4 x-7
$$

at the point $(1,-1,2)$.
(c) Find the gradient and unit vector normal to the surface $f=x^{2}+y-z$ at the point $(1,0,0)$.

